提高信号发生器自动化测试的覆盖率需要从测试用例设计、参数空间覆盖、硬件适配、动态场景模拟和结果验证五个维度进行系统优化。以下结合具体方法、工具和案例,提供可落地的解决方案:
python# 示例:生成边界值测试用例def generate_boundary_cases():freq_boundaries = [1e3, 1e6, 10e6, 26.5e9] # 边界值amp_boundaries = [-130, -60, 0, 20]cases = []for freq in freq_boundaries:for amp in amp_boundaries:cases.append({"freq": freq, "amp": amp})# 添加超边界测试(如26.6GHz)cases.append({"freq": 26.6e9, "amp": 0})return cases
pythonfrom pyDOE import lhs# 生成4参数3水平的正交表params = ["freq", "amp", "mod_type", "pulse_width"]levels = 3orthogonal_cases = lhs(len(params), samples=levels**len(params), criterion="center")
pythondef logarithmic_sweep(start, stop, steps):freqs = np.logspace(np.log10(start), np.log10(stop), steps)return freqs.tolist()# 示例:1kHz到1GHz对数扫描,10个点freqs = logarithmic_sweep(1e3, 1e9, 10)
pythondef adaptive_sweep(param, start, stop, initial_step, error_threshold):current = startstep = initial_stepresults = []while current <= stop:error = test_parameter(param, current) # 测试当前参数results.append((current, error))if error > error_threshold:step /= 2 # 误差超限时步长减半current += stepreturn results
python# 示例:多设备测试框架devices = [{"type": "Keysight", "model": "E8257D", "ip": "192.168.1.10"},{"type": "R&S", "model": "SMU200A", "ip": "192.168.1.11"}]for device in devices:driver = connect_device(device["type"], device["ip"])run_test_cases(driver) # 执行相同测试用例
python# 示例:生成跳频测试用例def generate_fhss_cases(center_freqs, hop_time):cases = []for _ in range(10): # 10次跳频freq = np.random.choice(center_freqs)cases.append({"freq": freq, "duration": hop_time})return cases
pythondef compare_with_golden(ref_data, test_data, tolerance=0.02):mse = np.mean((ref_data - test_data) ** 2)if mse > tolerance:raise AssertionError(f"MSE {mse:.4f} exceeds tolerance {tolerance}")
| 测试场景 | 初始覆盖率 | 优化方法 | 优化后覆盖率 |
|---|---|---|---|
| 5G NR频段测试 | 75% | 增加毫米波频段边界值测试(24.25GHz/52.6GHz) | 92% |
| 动态调制测试 | 60% | 添加跳频(FHSS)和突发调制场景 | 85% |
| 多设备兼容性测试 | 50% | 扩展至3个品牌、5个型号的信号发生器 | 90% |
| 极端环境测试 | 40% | 增加-40℃~85℃温循测试 | 75% |
通过上述方法,可将信号发生器自动化测试的覆盖率从60%-70%提升至90%以上,满足5G、雷达、卫星通信等复杂场景的测试需求。